Seminar Algebra, Geometry, Topology and Applications

Marrakesh, September 26, 2020

On pseudo-Euclidean Novikov algebras

Hicham Lebzioui

Sultan Moulay Slimane University
h.lebzioui@usms.ma

Overview

(1) Introduction and main result
(2) Examples of pseudo-Euclidean Novikov algebras
(3) Pseudo-Euclidean Novikov algebras with non-degenerate Lie derived ideal

44 Pseudo-Euclidean Novikov algebras with degenerate Lie derived ideal
(5) Pseudo-Euclidean Novikov algebras of signature $(2, n-2)$ with 2-step nilpotent underlying Lie algebras

Left-symmetric algebras

Definition
A left-symmetric algebra A is a vector space over a field \mathbb{K} with a bilinear product $(x, y) \longrightarrow x y$ satisfying $(x, y, z)=(y, x, z)$ for $x, y, z \in \mathrm{~A}$, where $(x, y, z)=(x y) z-x(y z)$.

Remark

If A is a left-symmetric algebra, then the commutator $[x, y]=x y-y x$ define a Lie bracket on A . We denote this underlying Lie algebra by A_{L}.

Left-symmetric algebras are non-associative algebras arising from the study of affine manifolds and some other geometric structures. For example, a Lie group admits an affine connexion if and only if its Lie algebra admits a Left-symmetric product compatible with the Lie brackets.

Left-symmetric algebras

Let A be a left-symmetric algebra. We denote by $\mathrm{L}_{x}\left(\right.$ resp. R_{x}) the left (resp. right) multiplication by x; i-e, $\mathrm{L}_{x}(y)=x y=\mathrm{R}_{y}(x)$.

Definition
A left-symmetric algebra is called transitive (or complete) if all right multiplications R_{x} are nilpotent.

The transitivity corresponds to the completeness of the affine manifolds in geometry.

Novikov algebras

Novikov algebras constitute a special class of left-symmetric algebras.

Definition

A Novikov algebra A is a left-symmetric algebra such that all right multiplications commute. That is $\left[\mathrm{R}_{x}, \mathrm{R}_{y}\right]=0$ for any $x, y \in \mathrm{~A}$.

The abstract study of Novikov algebras was started by Zelmanov and Filipov. The term "Novikov algebra" was given by Osborn.
Novikov asked whether there exist simple Novikov algebras.
Theorem (Zelmanov, Soviet Math. Dokl. 1987)
A finite-dimensional simple Novikov algebra over an algebraically closed field with characteristic 0 is one-dimensional.

Theorem (Burde, J. Geom. Phys. 2006)
The underlying Lie algebra of a Novikov algebra is solvable.

Novikov algebras with an invariant symmetric bilinear form

Definition

A nondegenerate symmetric bilinear form \langle,$\rangle on a Novikov algebra A is$ said to be invariant if $\left\langle\mathrm{R}_{x}(y), z\right\rangle=\left\langle y, \mathrm{R}_{x}(z)\right\rangle$ for any $x, y, z \in \mathrm{~A}$.

Let $A_{k, 0}$ denote the real vector space of dimension k with zero multiplication and $F_{k+1,0}=e_{0}, e_{1}, \ldots, e_{k}: e_{i} e_{0}=e i, i=0, \ldots, k$.

Theorem (Zelmanov, Sov. Math. Dokl. 1987)
Let A be a real Novikov algebra provided with an invariant positive definite symmetric bilinear form. Then A is an orthogonal direct sum of the form $\mathrm{A}=\oplus_{i} \mathrm{~A}_{i}$ where each A_{i} is isomorphic to either the algebra $\mathrm{A}_{k, 0}$ or the algebra $F_{k+1,0}$, for some integer $k \geq 1$. In particular, A is associative.

Novikov algebras with an invariant symmetric bilinear form

Theorem (Guediri, J. Geom. Phys. 2014 and 2016)
Let A be a real n-dimensional Novikov algebra provided with an invariant Lorentzian symmetric bilinear form. Then A is isomorphic to an orthogonal direct sum of the form $\mathrm{A}=\mathrm{A}_{1} \oplus \mathrm{~A}_{2}$, where A_{1} is an algebra in Table 1 and A_{2} is a direct sum of the algebras $A_{k, 0}$ and $F_{k+1,0}$.

Pseudo-Euclidean Novikov algebras

Definition

A pseudo-Euclidean Novikov algebra $(\mathrm{A},\langle\rangle$,$) is a Novikov algebra A with$ a non-degenerate symmetric bilinear form \langle,$\rangle such that$ $\left\langle\mathrm{L}_{x}(y), z\right\rangle+\left\langle y, \mathrm{~L}_{x}(z)\right\rangle=0$ for any $x, y, z \in \mathrm{~A}$.

Definition

A flat pseudo-Euclidean Lie algebra $(\mathfrak{g},\langle\rangle$,$) is a Lie algebra \mathfrak{g}$ with a non-degenerate symmetric bilinear form \langle,$\rangle such that the Levi-Civita$ product defined by

$$
2\langle x y, z\rangle=\langle[x, y], z\rangle-\langle[y, z], x\rangle+\langle[z, x], y\rangle
$$

is left-symmetric.

Pseudo-Euclidean Novikov algebras

Remark

Let $(\mathrm{A},\langle\rangle$,$) be a pseudo-Euclidean Novikov algebra. Then, \left(\mathrm{A}_{\mathrm{L}},\langle\rangle,\right)$ is a flat pseudo-Euclidean Lie algebra. Conversely, If $(\mathfrak{g},\langle\rangle$,$) is a flat$ pseudo-Euclidean Lie algebra such that $\left[\mathrm{R}_{x}, \mathrm{R}_{y}\right]=0$ for any $x, y \in \mathfrak{g}$ (with respect to the Levi-Civita product) then the vector space \mathfrak{g} endowed by the Levi-Civita product and the bilinear form \langle,$\rangle is a pseudo-Euclidean$ Novikov algebra.

> Problem
> Which Novikov algebras admit such pseudo-Euclidean metric? Or, equivalently, Which flat pseudo-Euclidean Lie algebras admit Novikov Levi-Civita product?

Reference and main result

Ficham Lebzioui (2020)
On pseudo-Eucliean Novikov algebras
Journal of Algebra 564, 300-316.
Theorem
Let $(\mathrm{A},\langle\rangle$,$) be a Lorentzian Novikov algebra. Then \mathrm{A}$ is transitive and A_{L} is unimoduar.

Double extension of flat pseudo-Euclidean Lie algebras

Let us recall the double extension process introduced by A. Aubert and A. Medina, and which plays an important role in the study of flat pseudo-Riemannian Lie groups. Let $\left(B,[,]_{0},\langle,\rangle_{0}\right)$ be a flat pseudo-Euclidean Lie algebra, $\xi, D: B \longrightarrow B$ two endomorphisms of B, $b_{0} \in B$ and $\mu \in \mathbb{R}$ such that:
(1) ξ is a 1-cocycle of $\left(B,[,]_{0}\right)$ with respect to the representation $\mathrm{L}: B \longrightarrow \operatorname{End}(B)$ defined by the left multiplication associated to the Levi-Civita product, i.e., for any $a, b \in B$,

$$
\begin{equation*}
\xi([a, b])=\mathrm{L}_{a} \xi(b)-\mathrm{L}_{b} \xi(a) \tag{1}
\end{equation*}
$$

(2) $D-\xi$ is skew-symmetric with respect to \langle,\rangle_{0},

$$
\begin{equation*}
[D, \xi]=\xi^{2}-\mu \xi-\mathrm{R}_{b_{0}} \tag{2}
\end{equation*}
$$

and for any $a, b \in B$

$$
\begin{equation*}
a . \xi(b)-\xi(a . b)=D(a) . b+a . D(b)-D(a . b) . \tag{3}
\end{equation*}
$$

We call $\left(\mu, D, \xi, b_{0}\right)$ satisfying the two conditions above admissible.

Double extension of flat pseudo-Euclidean Lie algebras

Given (μ, D, ξ, b_{0}) admissible, we endow the vector space $\mathfrak{g}=\mathbb{R} e \oplus B \oplus \mathbb{R} \bar{e}$ with the inner product \langle,$\rangle which extends \langle,\rangle_{0}$, for which $\operatorname{span}\{e, \bar{e}\}$ and B are orthogonal, $\langle e, e\rangle=\langle\bar{e}, \bar{e}\rangle=0$ and $\langle e, \bar{e}\rangle=1$. We define also on \mathfrak{g} the brackets
$[\bar{e}, e]=\mu e,[\bar{e}, a]=D(a)-\left\langle b_{0}, a\right\rangle_{0} e \quad$ and $\quad[a, b]=[a, b]_{0}+\left\langle\left(\xi-\xi^{*}\right)(a), b\right\rangle_{0} e$ where $a, b \in B$. Then $(\mathfrak{g},[],,\langle\rangle$,$) is a flat pseudo-Euclidean Lie algebra$ called double extension of $\left(B,[,]_{0},\langle,\rangle_{0}\right)$ according to $\left(\mu, D, \xi, b_{0}\right)$. Conversely, if a flat pseudo-Euclidean Lie algebra (\mathfrak{g},\langle,$\rangle) contains a$ totally isotropic two-sided ideal I (for the Levi-Civita product) such that $\operatorname{dim} \mathrm{I}=1$ and I^{\perp} is also a two sided-ideal, then $(\mathfrak{g},\langle\rangle$,$) is obtained by$ this process.

Double extension of flat pseudo-Euclidean Lie algebras

Note that, if we denote the Levi-Civita product in \mathfrak{g} (resp. B) by a.b (resp. $a b$), then we have for any $a, b \in B$,

$$
\left\{\begin{array}{l}
e . e=e . a=a . e=e . \bar{e}=0 \\
a . b=\langle\xi(a), b\rangle_{B} e+a b \\
\bar{e} . e=\mu e \tag{4}\\
\bar{e} . \bar{e}=b_{0}-\mu \bar{e} \\
\bar{e} . a=-\left\langle b_{0}, a\right\rangle_{B} e+(D-\xi)(a) \\
a . \bar{e}=-\xi(a)
\end{array}\right.
$$

Examples of pseudo-Euclidean Novikov algebras

Proposition

Let $(\mathfrak{g},\langle\rangle$,$) be a pseudo-Euclidean Lie algebra. If \mathfrak{g}$ splits orthogonaly as $\mathfrak{g}=\mathfrak{b} \oplus \mathfrak{u}$, where \mathfrak{b} is an abelian sub-algebra, \mathfrak{u} is an abelian ideal and ad_{b} is skew-symmetric for any $b \in \mathfrak{b}$, then \mathfrak{g} endowed with the Levi-Civita product is a pseudo-Euclidean Novikov algebra.

Proof.

Let $x \in \mathfrak{u}$. If $y, z \in \mathfrak{u}$, then $\left\langle\mathrm{L}_{x}(y), z\right\rangle=0$. If $y \in \mathfrak{u}$ and $z \in \mathfrak{b}$, since ad_{z} is skew-symmetric then $\left\langle\mathrm{L}_{x}(y), z\right\rangle=0$. Thus $\mathrm{L}_{x}(y)=0$ for any $y \in \mathfrak{u}$. Similarly, we show that $\mathrm{L}_{x}(y)=0$ for any $y \in \mathfrak{b}$. Thus $\mathrm{L}_{x}=0$ and $\mathrm{R}_{x}=-\operatorname{ad}_{x}$ for any $x \in \mathfrak{u}$. We have in the same way, $\mathrm{L}_{x}=\operatorname{ad}_{x}$ and $\mathrm{R}_{x}=0$ for any $x \in \mathfrak{b}$. Thus $\mathrm{L}_{[x, y]}=\left[\mathrm{L}_{x}, \mathrm{~L}_{y}\right]$ for any $x, y \in \mathfrak{g}$, which implies that the Levi-Civita product is left-symmetric. On the other hand, if $x \in \mathfrak{b}$ and $y \in \mathfrak{g}$, then we have obviously $\left[\mathrm{R}_{x}, \mathrm{R}_{y}\right]=0$. Since \mathfrak{u} is abelian, then for any $x, y \in \mathfrak{u}$,
$\left[R_{x}, R_{y}\right]=\left[\operatorname{ad}_{x}, \operatorname{ad}_{y}\right]=\operatorname{ad}_{[x, y]}=0$, which shows that the Levi-Civita product is of Novikov.

Examples

(1) If a Lie group admits a flat left-invariant Riemannian metric then its Lie algebra endowed with the Levi-Civita product is an Euclidean Novikov algebra (Milnor, Adv. in Maths. 1976)
(2) If a Lie group admits a flat left-invariant pseudo-Riemannian metric such that $\langle,\rangle_{[\mathfrak{g}, \mathfrak{g}]}$ is positive or negative definite then \mathfrak{g} endowed with the Levi-Civita product is a pseudo-Euclidean Novikov algebra (L, Proc. of A.M.S. 2020)

Theorem

Let $(\mathrm{A},\langle\rangle$,$) be a pseudo-Euclidean Novikov algebra. Then \langle,\rangle_{\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]}$ is positive or negative definite if and only if A_{L} splits orthogonaly as $\mathrm{A}_{\mathrm{L}}=\mathfrak{b} \oplus \mathfrak{u}$, where \mathfrak{b} is an abelian sub-algebra, \mathfrak{u} is an abelian ideal and ad_{b} is skew-symmetric for any $b \in \mathfrak{b}$. In this case, the Novikov product is given by $\mathrm{R}_{b}=0$ for any $b \in \mathfrak{b}$ and $\mathrm{R}_{u}=-\operatorname{ad}_{u}$ for any $u \in \mathfrak{u}$.

The following example gives a Lorentzian Novikov algebra (A, \langle,$\rangle) such$ that $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right.$] is Lorentzian.

Example

The Lie algebra $\mathfrak{e}(1,1)$ of the Lie group of rigid motions of Minkowski plane. $\mathfrak{e}(1,1)=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\}$ endowed with the only non vanishing Lie brackets $\left[e_{1}, e_{2}\right]=e_{3}$ and $\left[e_{1}, e_{3}\right]=e_{2}$ and the flat Lorentzian metric \langle, where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is orthonormal with $\left\langle e_{3}, e_{3}\right\rangle=-1$. The only non vanishing Levi-Civita products are $e_{1} \cdot e_{2}=e_{3}$ and $e_{1} \cdot e_{3}=e_{2}$. Thus the product is of Novikov.

The second example is an example of Lorentzian Novikov algebras $(A,\langle\rangle$,$) such that \left[A_{L}, A_{L}\right]$ is degenerate.

Example

Let $(\mathfrak{g},\langle\rangle$,$) be a flat Lorentzian 2-step nilpotent Lie algebra, then \mathfrak{g}$ endowed with the Levi-Civita product is a Lorentzian Novikov algebra. In fact, the Lie algebra \mathfrak{g} is a trivial extension of the 3-dimensional Heisenberg Lie algebra \mathcal{H}_{3}. That is $\mathfrak{g}=Z_{1} \oplus \mathcal{H}_{3}$ where $Z_{1} \subset \mathfrak{z}(\mathfrak{g})$ and \mathcal{H}_{3} is Lorentzian with degenerate center. Thus, we can find a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of \mathcal{H}_{3} such that the Lie bracket is given by $\left[e_{1}, e_{2}\right]=\lambda e_{3}$ where $\lambda \in \mathbb{R}^{*}$ and the only non vanishing scalar products on \mathcal{H}_{3} are $\left\langle e_{1}, e_{3}\right\rangle=\left\langle e_{2}, e_{2}\right\rangle=1$. The non vanishing Levi-Civita products are $e_{1} \cdot e_{1}=-\lambda e_{2}$ and $e_{1} \cdot e_{2}=\lambda e_{3}$ wich implies that this product is of Novikov.

Lorentzian Novikov algebras with nilpotent underlying Lie algebras

Theorem (Aubert-Medina, Tohoku Math. J., 2003)
A nilpotent Lie group admits a flat left-invariant Lorentzian metric if and only if its Lie algebra \mathfrak{g} is a double extension of an Euclidean abelian Lie algebra according to $\mu=0, D=\xi$ and b_{0} where $D^{2}=0$. Furthermore, \mathfrak{g} is at most 3-step nilpotent.

With notations of the last theorem, let us characterize Novikov Lorentzian algebras $(\mathrm{A},\langle\rangle$,$) such that \mathrm{A}_{\mathrm{L}}$ is nilpotent.

Proposition

The Levi-Civita product of a flat Lorentzian nilpotent Lie algebra $(\mathfrak{g},\langle\rangle$, is of Novikov if and only if $b_{0} \in \operatorname{ker} \xi$.

Proof.

Since B is abelian, then the Levi-Civita product of $\left(B,\langle,\rangle_{B}\right)$ is trivial. Let $a, b, c \in B$. Since $\mu=0$ and $D=\xi$, we have,

$$
\left[\mathrm{R}_{a}, \mathrm{R}_{b}\right]=\left[\mathrm{R}_{a}, \mathrm{R}_{e}\right]=\left[\mathrm{R}_{e}, \mathrm{R}_{\bar{e}}\right]=\mathrm{R}_{\bar{e}} \mathrm{R}_{a}=0
$$

Then \mathfrak{g} is of Novikov if and only if $R_{a} R_{\bar{e}}=0$ for any $a \in B$. We have $\mathrm{R}_{\mathrm{a}} \mathrm{R}_{\bar{e}}(e)=0$ and $\left\langle\mathrm{R}_{\mathrm{a}} \mathrm{R}_{\bar{e}}(b), e\right\rangle=\left\langle\mathrm{R}_{a} \mathrm{R}_{\bar{e}}(b), c\right\rangle=0$. Since $\xi^{2}=0$, then

$$
\left\langle\mathrm{R}_{a} \mathrm{R}_{\bar{e}}(b), \bar{e}\right\rangle=\langle(b \cdot \bar{e}) \cdot a, \bar{e}\rangle=-\langle\xi(b) \cdot a, \bar{e}\rangle=\left\langle\xi^{2}(b), a\right\rangle=0 .
$$

Thus $R_{a} R_{\bar{e}}(b)=0$. On the other hand, we have $\left\langle\mathrm{R}_{a} \mathrm{R}_{\bar{e}}(\bar{e}), e\right\rangle=\left\langle\mathrm{R}_{a} \mathrm{R}_{\bar{e}}(\bar{e}), b\right\rangle=0$, and

$$
\left\langle\mathrm{R}_{a} \mathrm{R}_{\bar{e}}(\bar{e}), \bar{e}\right\rangle=\langle(\bar{e} \cdot \bar{e}) \cdot a, \bar{e}\rangle=\left\langle b_{0} \cdot a, \bar{e}\right\rangle=\left\langle\xi\left(b_{0}\right), a\right\rangle_{B},
$$

for any $a \in B$. Thus \mathfrak{g} is of Novikov if and only if $b_{0} \in \operatorname{ker} \xi$.

Lorentzian Novikov algebras with nilpotent underlying Lie algebras

Let $(\mathrm{A},\langle\rangle$,$) be a Lorentzian Novikov algebra. Then, \mathrm{A}_{\mathrm{L}}$ is nilpotent if and only if A_{L} is a double extension of an Euclidean abelian Lie algebra $\left(B,\langle,\rangle_{B}\right)$ according to $\mu=0, D=\xi$ and b_{0} where $\xi^{2}=0$ and $b_{0} \in \operatorname{ker} \xi$. That is, $\mathrm{A}_{\mathrm{L}}=\mathbb{R} e \oplus B \oplus \mathbb{R} \bar{e}$ endowed by the non-trivial Lie brackets, for any $a, b \in B$,

$$
[\bar{e}, a]=\xi(a)-\left\langle b_{0}, a\right\rangle_{B} e \text { and }[a, b]=\left\langle\left(\xi-\xi^{*}\right)(a), b\right\rangle e,
$$

where $\xi \in \operatorname{End}(B)$ such that $\xi^{2}=0$ and $b_{0} \in \operatorname{ker} \xi$. The non-trivial Novikov products are

$$
a . b=\langle\xi(a), b\rangle_{B} e, \bar{e} . \bar{e}=b_{0}, \bar{e} . a=-\left\langle b_{0}, a\right\rangle_{B} e \text { and } a . \bar{e}=-\xi(a) .
$$

Note that, in this case, A_{L} is at most 3-step nilpotent and if A_{L} is not abelian then, the derived Lie algebra $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ is degenerate.

Pseudo-Euclidean Novikov algebras with non-degenerate Lie derived ideal

Pseudo-Euclidean Novikov algebras with non-degenerate Lie derived ideal

Proposition

Let $(\mathrm{A},\langle\rangle$,$) be a pseudo-Euclidean Novikov algebra. Then$
(1) $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ is a two-sided ideal.
(2) For any $x \in\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}, \mathrm{R}_{x}$ is symmetric and $\mathrm{R}_{x}^{3}=0$.
(3) If $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ is non-degenerate, then $\mathrm{R}_{x}=0$ for any $x \in\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$. In particular, $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$ is abelian.

Proof.

Let $(\mathrm{A},\langle\rangle$,$) be a pseudo-Euclidean Novikov Algebra.$
(1) From $\left[\mathrm{L}_{x}-\operatorname{ad}_{x}, \mathrm{~L}_{y}-\operatorname{ad}_{y}\right] z=0$ for any $x, y, z \in \mathrm{~A}$, we deduce that

$$
\begin{aligned}
0 & =[x, y] \cdot z-\left[\operatorname{ad}_{x}, \mathrm{~L}_{y}\right] z-\left[\mathrm{L}_{x}, \operatorname{ad}_{y}\right] z+[[x, y], z] \\
& =[x, y] \cdot z+y \cdot[x, z]+x \cdot[z, y]+[y \cdot z, x]+[y, x \cdot z]+[[x, y], z]
\end{aligned}
$$

hence $[x, y] \cdot z+y \cdot[x, z]+x \cdot[z, y] \in\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$. We have

$$
\begin{aligned}
y \cdot[x, z]+x \cdot[z, y] & =[x, z] \cdot y+[y,[x, z]]+[z, y] \cdot x+[x,[z, y]] \\
& =(x \cdot z) \cdot y-(z \cdot x) \cdot y+(z \cdot y) \cdot x-(y \cdot z) \cdot x+[y,[x, z]]+[x,[z, y]] \\
& =(x \cdot y-y \cdot x) \cdot z+[y,[x, z]]+[x,[z, y]] \\
& =[x, y] \cdot z+[y,[x, z]]+[x,[z, y]]
\end{aligned}
$$

then $[x, y] . z \in\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$. Since $z \cdot[x, y]=[z,[x, y]]+[x, y] . z$, thus $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ is a two-sided ideal.
(2) Let $x \in\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$ and $y, z \in \mathrm{~A}_{\mathrm{L}}$. We have $\langle y \cdot x, z\rangle=\langle z \cdot x, y\rangle$, which implies that R_{x} is symmetric. On the other hand, (??) is equivalent to

$$
\mathrm{R}_{u \cdot v}-\mathrm{R}_{v} \mathrm{R}_{u}=\left[\mathrm{L}_{u}, \mathrm{R}_{v}\right]
$$

for any $u, v \in \mathrm{~A}$. Since $x \cdot x=0$ then, from the Novikov condition, we deduce that $\mathrm{R}_{x} \mathrm{~L}_{x}=0$. On the other hand, (??) implies that $\left[\mathrm{R}_{x}, \mathrm{~L}_{x}\right]=\mathrm{R}_{x}^{2}$. Thus,

$$
\mathrm{R}_{x}^{3}=\mathrm{R}_{x}\left[\mathrm{R}_{x}, \mathrm{~L}_{x}\right]=-\mathrm{R}_{x} \mathrm{~L}_{x} \mathrm{R}_{x}=0
$$

(3) If $\left[A_{L}, A_{L}\right]$ is non-degenerate, then $A_{L}=\left[A_{L}, A_{L}\right]^{\perp} \oplus\left[A_{L}, A_{L}\right]$. Let $x, y \in\left[A_{L}, A_{L}\right]^{\perp}$, we have $x . y=\frac{1}{2}[x, y] \in\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$.

Pseudo-Euclidean Novikov algebras with non-degenerate Lie derived ideal

Since L_{X} is skew-symmetric and $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ is stable by L_{X}, then $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$ is also stable by L_{x}. Thus $x . y \in\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right] \cap\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$ which implies that $x . y=0$. Let $u \in\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$. Since $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ is a two-sided ideal, then $u \cdot x \in\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$. For any $v \in\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ we have $\langle u \cdot x, v\rangle=-\langle x, u \cdot v\rangle=0$, thus $\mathrm{R}_{x}=0$ for any $x \in\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$

In order to characterize pseudo-Euclidean Novikov algebras (A, \langle,$\rangle)$ where $\left[A_{L}, A_{L}\right]$ is Lorentzian, we prove first two Lemmas.

Lemma
Let $(\mathrm{A},\langle\rangle$,$) be a pseudo-Euclidean Novikov Algebra where \left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ is Lorentzian. Then $\left(\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right],\langle,\rangle_{\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]}\right)$ can not be a flat Lorentzian 2-step nilpotent Lie algebra.

Proof.
Assume that $\left(\left[A_{L}, A_{L}\right],\langle,\rangle_{\left[A_{L}, A_{L}\right]}\right)$ is a flat Lorentzian 2-step nilpotent Lie algebra. Then, $\left[A_{L}, A_{L}\right]$ must be a trivial extension of \mathcal{H}_{3}. That is $\left[A_{L}, A_{L}\right]=Z_{1} \oplus \mathcal{H}_{3}$ where Z_{1} is Euclidean, $Z_{1} \subset \mathfrak{z}\left(\left[A_{L}, A_{L}\right]\right)$ and \mathcal{H}_{3} is Lorentzian with degenerate center. Thus, we can find a basis $\{e, b, \bar{e}\}$ of \mathcal{H}_{3} such that $[\bar{e}, b]=\lambda e$ where $\lambda \in \mathbb{R}^{*}$ and the only non vanishing scalar products on \mathcal{H}_{3} are $\langle e, \bar{e}\rangle=\langle b, b\rangle=1$. Let $\left\{e_{1}, \ldots, e_{r}\right\}$ be an orthonormal basis of $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$. Since $\mathrm{R}_{e_{i}}=0$, then $\operatorname{ad}_{e_{i}}$ is skew-symmetric for any $i \in\{1, \ldots, r\}$. We put

$$
\begin{aligned}
& {\left[e_{i}, b\right]=\alpha_{i} e+\beta_{i} \bar{e}+z_{i}} \\
& {\left[e_{i}, \bar{e}\right]=-\alpha_{i} b-\gamma_{i} \bar{e}+u_{i},} \\
& {\left[e_{i}, e\right] \quad=\gamma_{i} e-\beta_{i} b+w_{i}}
\end{aligned} \quad \text { where } z_{i}, u_{i}, w_{i} \in Z_{1} \text { and } \alpha_{i}, \beta_{i}, \gamma_{i} \in \mathbb{R} \text {. }
$$

Using (??), we can check that $\mathrm{L}_{z}=\mathrm{L}_{e}=\mathrm{L}_{b}=0$ for any $z \in Z_{1}$. From

$$
\left\langle\left[e_{i}, \bar{e}\right] . e-e_{i} \cdot(\bar{e} . e)+\bar{e} \cdot\left(e_{i} \cdot e\right), \bar{e}\right\rangle=0
$$

we deduce that $-\gamma_{i}\langle\bar{e} . e, \bar{e}\rangle+\left\langle e_{i} . \bar{e}, \bar{e} . e\right\rangle-\left\langle e_{i} . e, \bar{e} . \bar{e}\right\rangle=0$. Since $L_{e_{i}}=\operatorname{ad}_{e_{i}}$ and $\langle\bar{e} . e, \bar{e}\rangle=0$ then $\left\langle-\alpha_{i} b-\gamma_{i} \bar{e}+u_{i}, \bar{e} . e\right\rangle-\left\langle\gamma_{i} e-\beta_{i} b+w_{i}, \bar{e} . \bar{e}\right\rangle=0$, which implies that $\beta_{i}\langle\bar{e} . \bar{e}, b\rangle=0$, thus $\lambda \beta_{i}=0$ for any $i \in\{1, \ldots, r\}$. In the same way, from

$$
\left\langle\left[e_{i}, \bar{e}\right] \cdot b-e_{i} \cdot(\bar{e} \cdot b)+\bar{e} \cdot\left(e_{i} \cdot b\right), \bar{e}\right\rangle=0
$$

we show that $\lambda \gamma_{i}=0$ for any $i \in\{1, \ldots, r\}$. Since $\lambda \neq 0$ then $\beta_{i}=\gamma_{i}=0$ for any $i \in\{1, \ldots, r\}$, which implies that $\bar{e} \notin\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$. This gives a contradiction, and completes the proof.

Pseudo-Euclidean Novikov algebras with non-degenerate Lie derived ideal

Lemma

Let $(\mathrm{A},\langle\rangle$,$) be a pseudo-Euclidean Novikov algebra where \left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ is Lorentzian. Then $\left(\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right],\langle,\rangle_{\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]}\right)$ can not be a flat Lorentzian 3-step nilpotent Lie algebra.

Proof.
Assume that $\left(\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right],\langle,\rangle_{\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]}\right)$ is a flat Lorentzian 3-step nilpotent Lie algebra. According to Theorem ??, $\left(\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right],\langle,\rangle_{\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]}\right)$ must be a double extension of an Euclidean abelian Lie algebra B according to $\mu=0, D=\xi$ and b_{0} where $D^{2}=0$ and $D \neq 0$. We have obviously, $\operatorname{Im} D \subset$ ker D. We put $\operatorname{rank}(D)=r \geq 1, B=\operatorname{Im} D \oplus(\operatorname{Im} D)^{\perp}$ and let $\left\{b_{1}, \ldots, b_{r}\right\}\left(\right.$ resp. $\left.\left\{b_{r+1}, \ldots, b_{p}\right\}\right)$ be an orthonormal basis of $\operatorname{Im} D\left(\right.$ resp. of $\left.(\operatorname{Im} D)^{\perp}\right)$. Note that, $p-r \geq r$. Let $D=\left(d_{i j}\right)_{1 \leq i, j \leq p}$ be the matrix of D in the basis $\left\{b_{1}, \ldots, b_{p}\right\}$. We have $d_{i j}=0$ for all $i \in\{1, \ldots, p\}$ and $j \in\{1, \ldots, r\}$, and $d_{i j}=0$ for all $i, j \in\{r+1, \ldots, p\}$. Let \bar{D} be the submatrix of D formed by $d_{i j}$ for $i \in\{1, \ldots, r\}$ and $j \in\{r+1, \ldots, p\}$. Then we have $\operatorname{rank}(\bar{D})=r$. We Put $\mathrm{A}_{\mathrm{L}}=\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right] \perp \oplus\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ where $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]=\mathbb{R} e \oplus B \oplus \mathbb{R} \bar{e}$. According to (??), the only non vanishing Lie brackets in $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ are given by

$$
\begin{array}{ll}
{\left[\bar{e}, b_{i}\right]} & =\lambda_{i} e, \quad \text { for any } i \in\{1, \ldots, r\} \\
{\left[\bar{e}, b_{i}\right]} & =\sum_{k=1}^{r} d_{k i} b_{k}+\lambda_{i} e, \text { for any } i \in\{r+1, \ldots, p\}, \\
{\left[b_{i}, b_{j}\right]} & =-d_{i j} e, \quad \text { for any } i \in\{1, \ldots, r\} \text { and } j \in\{r+1, \ldots, p\} .
\end{array}
$$

Let $\left\{e_{1}, \ldots, e_{g}\right\}$ be an orthonormal basis of $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$. Since $\mathrm{R}_{e_{S}}=0$ then $\operatorname{ad}_{e_{s}}$ is skew-symmetric for any
$s \in\{1, \ldots, q\}$. Then we can put for any $s \in\{1, \ldots, q\}$

$$
\begin{aligned}
& {\left[e_{s}, e\right]=x e+\sum_{i=1}^{p} x_{i} b_{i},} \\
& {\left[e_{s}, b_{i}\right]=\alpha_{i} e+\sum_{k=1}^{p} a_{k i} b_{k}-x_{i} \bar{e},} \\
& {\left[e_{s}, \bar{e}\right]=-\sum_{i=1}^{p} \alpha_{i} b_{i}-x \bar{e}^{2},}
\end{aligned}
$$

where $x, x_{i}, \alpha_{i} \in \mathbb{R}$ for any $i \in\{1, \ldots, p\}$, and $\left(a_{i j}\right)_{1 \leq i, j \leq p}$ is a skew-symmetric matrix. Let $j \in\{r+1, \ldots, p\}$, from the Jacobi identity $\left[\left[e_{s}, e\right], b_{j}\right]+\left[\left[e, b_{j}\right], e_{s}\right]+\left[\left[b_{j}, e_{s}\right], e\right]=0$ we deduce that $\sum_{i=1}^{r} x_{i}\left[b_{i}, b_{j}\right]=0$, which implies that $\sum_{i=1}^{r} d_{i j} x_{i}=0$ for any $j \in\{r+1, \ldots, p\}$. Since $\operatorname{rank}(\bar{D})=r$, thus $x_{i}=0$ for any $i \in\{1, \ldots, r\}$.
Let $i \in\{1, \ldots, r\}$ and $j \in\{r+1, \ldots, p\}$. Let $\left[\left[e_{s}, b_{i}\right], b_{j}\right]^{B}$ (resp. $\left[\left[b_{i}, b_{j}\right], e_{s}\right]^{B},\left[\left[b_{j}, e_{s}\right], b_{i}\right]^{B}$) be the compenent of $\left[\left[e_{s}, b_{i}\right], b_{j}\right]$ (resp. $\left.\left[\left[b_{i}, b_{j}\right], e_{s}\right],\left[\left[b_{j}, e_{s}\right], b_{i}\right]\right)$ with respect to B. Since $x_{i}=0$ for any $i \in\{1, \ldots, r\}$, then $\left[\left[e_{s}, b_{i}\right], b_{j}\right]^{B}=\left[\left[b_{j}, e_{s}\right], b_{i}\right]^{B}=0$, and $\left[\left[b_{i}, b_{j}\right], e_{s}\right]^{B}=d_{i j} \sum_{k=r+1}^{p} x_{k} b_{k}=0$. Since there exists a non nul $d_{i j}$, then $x_{i}=0$ for any $i \in\{r+1, \ldots, p\}$. Let us show now that $x=0$. Let $i \in\{r+1, \ldots, p\}$. We have $\left\langle\left[e_{s}, b_{i}\right] \cdot \bar{e}-e_{s} \cdot\left(b_{i} \cdot \bar{e}\right)+b_{i} \cdot\left(e_{s} \cdot \bar{e}\right), b_{1}\right\rangle=0$, then

$$
\left\langle\left[e_{s}, b_{i}\right] \cdot \bar{e}, b_{1}\right\rangle+\left\langle e_{s} \cdot b_{1}, b_{i} \cdot \bar{e}\right\rangle=\left\langle e_{s} \cdot \bar{e}, b_{i} \cdot b_{1}\right\rangle
$$

Since the product is of Novikov and $\mathrm{L}_{e_{S}}=\operatorname{ad}_{e_{S}}$, then

$$
\left\langle\left[e_{s}, b_{i}\right] \cdot \bar{e}, b_{1}\right\rangle=\left\langle\left(e_{s} \cdot b_{i}\right) \cdot \bar{e}, b_{1}\right\rangle=-\left\langle\left(e_{s} \cdot b_{i}\right) \cdot b_{1}, \bar{e}\right\rangle=-\left\langle\left(e_{s} \cdot b_{1}\right) \cdot b_{i}, \bar{e}\right\rangle=-\left\langle\left[e_{s} \cdot b_{1}\right] \cdot b_{i}, \bar{e}\right\rangle .
$$

According to (??), we can check that $\mathrm{L}_{e}=\mathrm{L}_{b_{j}}=0$ for any $j \in\{1, \ldots, r\}$. Then $\left\langle\left[e_{s}, b_{1}\right] \cdot b_{i}, \bar{e}\right\rangle=\sum_{k=r+1}^{p} a_{k 1}\left\langle b_{k} \cdot b_{i}, \bar{e}\right\rangle=0$ (because $i, k \in\{r+1, \ldots, p\}$). Thus $\left\langle\left[e_{s}, b_{1}\right], b_{i} \cdot \bar{e}\right\rangle=\left\langle\left[e_{s}, \bar{e}\right], b_{i} \cdot b_{1}\right\rangle$, which implies that $\sum_{k=1}^{r} a_{k 1}\left\langle b_{k}, b_{i} \cdot \bar{e}\right\rangle=-x\left\langle b_{i} \cdot b_{1}, \bar{e}\right\rangle$. Since $\left(a_{i j}\right)_{1 \leq i, j \leq p}$ is a skew-symmetric matrix, then we deduce the linear system

$$
d_{1 i} x+\sum_{k=2}^{r} d_{k i} a_{1 k}=0, \text { for any } i \in\{r+1, \ldots, p\}
$$

Since $\operatorname{rank}(\bar{D})=r$, then $x=a_{1 k}=0$ for any $k \in\{2, \ldots, r\}$, and hence $\bar{e} \notin\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$. This implies a contradiction, and completes the proof of the Lemma.

Pseudo-Euclidean Novikov algebras with non-degenerate Lie derived ideal

Theorem

$(\mathrm{A},\langle\rangle$,$) is a pseudo-Euclidean Novikov Algebra such that \left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ is Lorentzian if and only if $\mathrm{A}_{\mathrm{L}}=\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp} \oplus\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$, where $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$ and $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ are abelian, $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ is Lorentzian and ad_{X} is skew-symmetric for any $x \in\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$.

Proof.

A_{L} must be solvable, then $\left[A_{L}, A_{L}\right]$ is nilpotent. Since $\left[A_{L}, A_{L}\right]$ is a two-sided ideal, then $\left(\left[A_{L}, A_{L}\right],\langle,\rangle_{\left[A_{L}, A_{L}\right]}\right)$ is a flat Lorentzian nilpotent Lie algebra. According to Theorem of Aubert and Medina, $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ is at most 3-step nilpotent. By applying Lemma 1 and Lemma 2, we deduce that $\left[A_{L}, A_{L}\right]$ must be abelian. On the other hand, we have $R_{x}=0$ for any $x \in\left[A_{L}, A_{L}\right]^{\perp}$. Then $\left[A_{L}, A_{L}\right]^{\perp}$ is abelian and $\operatorname{ad}_{x}=L_{x}$ is skew-symmetric for any $x \in\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$.

Pseudo-Euclidean Novikov algebras with non-degenerate Lie derived ideal

Remark

The simplest example of the last Theorem, is the Lie group of rigid motions of Minkowski plane $\mathrm{E}(1,1)$. Note that this Lie group admits no flat left-invariant Riemannian metric. Indeed, if not, $\mathrm{E}(1,1)$ will be isomorphic to the Euclidean group $\mathrm{E}(2)$.

Corollary
Let $(\mathrm{A},\langle\rangle$,$) be a pseudo-Euclidean Novikov algebra such that \left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ is Lorentzian. Then A_{L} is 2-solvable and unimodular.

Proof.

According to the last Theorem, we have $\operatorname{tr}\left(\operatorname{ad}_{x}\right)=0$ for any $x \in A_{L}$, which implies that A_{L} is unimodular. Since $\left[A_{L}, A_{L}\right]$ is abelian, then A_{L} is 2-solvable.

Pseudo-Euclidean Novikov algebras with non-degenerate Lie derived ideal

Remark

It is well-known that a flat pseudo-Riemannian connected Lie group is geodesically complete if and only if it is unimodular. This is also equivalent to the fact that the associated left-symmetric structure is transitive. That is all right multiplications are nilpotent. Thus, according to Corollary 3.1, if $(\mathrm{A},\langle\rangle$,$) is a$ pseudo-Euclidean Novikov algebra such that $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ is Lorentzian, then A is transitive and the metric is complete.

Theorem

(A, \langle,$\rangle) is a Lorentzian Novikov algebra such that \left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ is non-degenerate if and only if $\mathrm{A}_{\mathrm{L}}=\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp} \oplus\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$, where $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$ and $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ are abelian, and ad_{x} is skew-symmetric for any $x \in\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$.

Proof.

We have two cases: if [$\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}$] is Euclidean then we can apply Theorem (L, Proc. A.M.S (2020)). If $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ is Lorentzian then we conclude by the last Theorem.

Pseudo-Euclidean Novikov algebras with degenerate Lie derived ideal

Pseudo-Euclidean Novikov algebras with degenerate Lie derived ideal

Proposition

Let $(\mathrm{A},\langle\rangle$,$) be a Lorentzian Novikov algebra. Then \mathrm{L}_{e}=\mathrm{R}_{e}=\operatorname{ad}_{e}=0$ for any $e \in\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right] \cap\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$.

Proof.
The result is trivial if $\left[A_{L}, A_{L}\right]$ is non-degenerate. Assume that $\left[A_{L}, A_{L}\right]$ is degenerate, and put $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right] \cap\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}=\mathbb{R}$ e. Thus \mathfrak{g} splits as

$$
\mathrm{A}_{\mathrm{L}}=\mathrm{U} \oplus \mathbb{R} e \oplus \mathrm{~W} \oplus \mathbb{R} \bar{e}
$$

where $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}=\mathrm{U} \oplus \mathbb{R} e,\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]=\mathbb{R} e \oplus \mathrm{~W}$ and U and W are Euclidean. Let $\left\{u_{1}, \ldots, u_{r}\right\}$ (resp. $\left\{w_{1}, \ldots, w_{q}\right\}$) be an orthonormal basis of U (resp. W). For all $x, y \in\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$, we have $x \cdot y=\frac{1}{2}[x, y] \in\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right] \cap\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$. Then we can put $e . u_{i}=-u_{i} . e=\frac{1}{2} \alpha_{i} e$, where $\alpha_{i} \in \mathbb{R}$. We have $\mathrm{R}_{u_{i}}^{k}(e)=\left(\frac{1}{2} \alpha_{i}\right)^{k} e$, for any $k \in \mathbb{N}^{*}$. Since $u_{i} \in\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$ then $\mathrm{R}_{u_{i}}$ is nilpotent and hence $\alpha_{i}=0$ for any $i \in\{1, \ldots, r\}$. Let $j \in\{1, \ldots, q\}$ and $x \in \mathrm{~A}_{\mathrm{L}}$. From

$$
\left\langle\mathrm{R}_{e}\left(w_{j}\right), x\right\rangle=\left\langle w_{j} \cdot e, x\right\rangle=-\left\langle e, w_{j} \cdot x\right\rangle,
$$

and the fact that $w_{j} \cdot x \in\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$, we deduce that $\mathrm{R}_{e}\left(w_{j}\right)=0$ for any $j \in\{1, \ldots, q\}$. Thus $\mathrm{R}_{e}(y)=0$ for any $y \in\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]+\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$. Since R_{e} is symmetric, then $\mathrm{R}_{e}(\bar{e})=\lambda e$.

We have

$$
\left\langle\mathrm{R}_{\bar{e}} \mathrm{R}_{e}(\bar{e}), \bar{e}\right\rangle=\langle(\bar{e} . e) \cdot \bar{e}, \bar{e}\rangle=\lambda\langle e . \bar{e}, \bar{e}\rangle=0,
$$

and

$$
\left\langle R_{e} R_{\bar{e}}(\bar{e}), \bar{e}\right\rangle=\langle(\bar{e} . \bar{e}), \bar{e} . e\rangle=\lambda\langle\bar{e} . \bar{e}, e\rangle=-\lambda\langle\bar{e}, \bar{e} . e\rangle=-\lambda^{2},
$$

thus $\lambda=0$ and $\mathrm{R}_{e}=0$. Then $\mathrm{ad}_{e}=\mathrm{L}_{e}$ is skew-symmetric. Recall that $e . u_{i}=\left[e, u_{i}\right]=0$ for any $i \in\{1, \ldots, r\}$. Let $\overline{\operatorname{ad}_{e}}$ be the restriction of the skew-symmetric endomorphism ad_{e} to $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$. The matrix of $\overline{\operatorname{ad}_{e}}$ in the basis $\left\{e, w_{1}, \ldots, w_{q}\right\}$ has the form

$$
\left(\begin{array}{ll}
0 & \beta \\
0 & M
\end{array}\right)
$$

where $\beta=\left(\beta_{1}, \ldots, \beta_{q}\right) \in \mathbb{R}^{q}$, and M is a $q \times q$-skew-symmetric matrix. Since A_{L} is solvable then $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ is nilpotent. Thus M is a skew-symmetric nilpotent matrix which implies that $M=0$. Then, we have $\operatorname{ad}_{w_{i}}(e)=\left[w_{i}, e\right]=-\beta_{i} e$ and $\operatorname{ad}_{w_{i}}^{k}(e)=\left(-\beta_{i}\right)^{k} e$ for any $k \in \mathbb{N}^{*}$. Thus $\beta_{i}=0$ for any $i \in\{1, \ldots, q\}$. Now, from $\langle[e, \bar{e}], y\rangle=-\langle\bar{e},[e, y]\rangle=0$ for any $y \in\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]+\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$, and $\langle[e, \bar{e}], \bar{e}\rangle=0$ we deduce that $\mathrm{L}_{e}=\mathrm{R}_{e}=\mathrm{ad}_{e}=0$, as desired.

Theorem

Let $(\mathrm{A},\langle\rangle$,$) be a Lorentzian Novikov algebra where \left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ is degenerate. Then $\left(\mathrm{A}_{\mathrm{L}},\langle\rangle,\right)$ is obtained by the double extension process from a flat Euclidean Lie algebra according to $\mu=0, D, \xi$ and b_{0} where $\xi^{2}=0$. Furthermore, A_{L} is unimodular.

Proof.
Put $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right] \cap\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}=\mathbb{R} e$. We have $\mathrm{L}_{e}=\mathrm{R}_{e}=0$. Then $\mathrm{I}=\mathbb{R} e$ is a totally isotropic one dimensional two-sided ideal, and I^{\perp} is also a two-sided ideal. Thus $\left(\mathrm{A}_{\mathrm{L}},\langle\rangle,\right)$ is a double extension of a flat Euclidean Lie algebra $\left(B,\langle,\rangle_{B}\right)$ according to μ, D, ξ and b_{0}. From

$$
\left\langle\mathrm{R}_{e} \mathrm{R}_{\bar{e}}(\bar{e}), \bar{e}\right\rangle=\langle(\bar{e} \cdot \bar{e}) \cdot e, \bar{e}\rangle=-\mu\langle\bar{e} \cdot e, \bar{e}\rangle=-\mu^{2},
$$

and

$$
\left\langle\mathrm{R}_{\bar{e}} \mathrm{R}_{e}(\bar{e}), \bar{e}\right\rangle=\langle(\bar{e} \cdot e) \cdot \bar{e}, \bar{e}\rangle=\mu\langle e \cdot \bar{e}, \bar{e}\rangle=0
$$

we deduce that $\mu=0$. According to (4), we have for any $a, b \in B$

$$
\left\langle\mathrm{R}_{\bar{e}} \mathrm{R}_{a}(b), \bar{e}\right\rangle=\langle(b \cdot a) \cdot \bar{e}, \bar{e}\rangle=0
$$

and

$$
\left\langle\mathrm{R}_{a} \mathrm{R}_{\bar{e}}(b), \bar{e}\right\rangle=\langle(b \cdot \bar{e}) \cdot a, \bar{e}\rangle=-\langle\xi(b) \cdot a, \bar{e}\rangle=\left\langle\xi^{2}(b), a\right\rangle
$$

thus $\xi^{2}=0$. Let $a, b \in B$ and $[a, b]_{B}$ the Lie bracket in B, and let $\overline{\operatorname{ad}_{a}}$ be the endomorphism of B defined by $\overline{\operatorname{ad}_{a}}(b)=[a, b]_{B}$. We have $\operatorname{tr}\left(\operatorname{ad}_{a}\right)=\operatorname{tr}\left(\overline{\operatorname{ad}_{a}}\right)$ for any $a \in B$. Since B is unimodular, then $\operatorname{tr}\left(\operatorname{ad}_{a}\right)=0$ for any $a \in B$. On the other hand, we have $\operatorname{tr}\left(\operatorname{ad}_{\bar{e}}\right)=\operatorname{tr}(D)$. Since $D-\xi$ is skew-symmetric and ξ is nilpotent, then $\operatorname{tr}(\operatorname{ad} \bar{e})=0$. $\operatorname{Thus~}_{\mathrm{L}} \mathrm{A}_{\mathrm{L}}$ is unimodular.

Pseudo-Euclidean Novikov algebras with degenerate Lie derived ideal

Let us give some applications of Theorem 4.1 in low dimensions. Note first that, since A_{L} must be unimodular, then there exists no 2-dimensional Lorentzian Novikov algebra such that $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ is degenerate. Note also that if A_{L} is abelian then $\left[A_{L}, A_{L}\right]$ is obviously non-degenerate.

Proposition

Let $(\mathrm{A},\langle\rangle$,$) be a Lorentzian Novikov algebra where \left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ is degenerate. Then
(1) If $\operatorname{dim} \mathrm{A}=3$, then A_{L} is isomorphic to \mathcal{H}_{3}.
(2) If $\operatorname{dim} \mathrm{A}=4$, then A_{L} is isomorphic to one of these Lie algebras:

- $\mathbb{R} \oplus \mathcal{H}_{3}$.
- \mathfrak{g}_{4}, the filiform Lie algebra of dimension 4.

Proof.
Note first that if B is abelian, then $\left(\mu=0, D, \xi, b_{0}\right)$ is admissible if and only if $D-\xi$ is skew-symmetric and $[D, \xi]=\xi^{2}$. In this case, the product is of Novikov if and only if

$$
\left\{\begin{array}{l}
D-\xi \text { is skew-symmetric } \tag{5}\\
\xi^{2}=0 \\
D \xi=\xi D=0 \\
b_{0} \in \operatorname{ker} \xi
\end{array}\right.
$$

If $\operatorname{dim} A=3$ then $\operatorname{dim} B=1$, which implies that $D=\xi=0$. Put $b_{0}=\lambda b$ where $B=\mathbb{R} b$ with $\langle b, b\rangle=1$. Thus, $\mathrm{A}_{\mathrm{L}}=\mathbb{R} e \oplus \mathbb{R} b \oplus \mathbb{R} \bar{e}$ where the only non vanishing Lie bracket is $[\bar{e}, b]=\lambda e$, with $\lambda \neq 0$. Thus A_{L} is isomorphic to \mathcal{H}_{3}. If $\operatorname{dim} \mathrm{A}=4$ then $\operatorname{dim} B=2$ and we can find an orthormal basis $\left\{b_{1}, b_{2}\right\}$ of B such that D, ξ and b_{0} have the forms

$$
\xi=D=\left(\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right) \text { and } b_{0}=\lambda b_{1}, \quad \text { or } \quad \xi=0, D=\left(\begin{array}{cc}
0 & \lambda \\
-\lambda & 0
\end{array}\right) \text { and } b_{0}=\lambda_{1} b_{1}+\lambda_{2} b_{2}
$$

In the first case, the Lie brackets are given by $\left[\bar{e}, b_{1}\right]=\lambda e,\left[\bar{e}, b_{2}\right]=a b_{1}$ and $\left[b_{1}, b_{2}\right]=-a e$, where $(\lambda, a) \neq(0,0)$. If $a=0$ then $\mathrm{A}_{\mathrm{L}} \cong \mathbb{R} \oplus \mathcal{H}_{3}$. If $a \neq 0$ then it's easy to find a basis where the Lie brackets are given by $\left[x_{1}, x_{2}\right]=x_{3}$ and $\left[x_{1}, x_{3}\right]=x_{4}$, which implies that $A_{L} \cong \mathfrak{g}_{4}$. In the second case, one can check that [A_{L}, A_{L}] is degenerate iff $\lambda=0$ and $\left(\lambda_{1}, \lambda_{2}\right) \neq(0,0)$, which also implies that $\mathrm{A}_{\mathrm{L}} \cong \mathbb{R} \oplus \mathcal{H}_{3}$.

Pseudo-Euclidean Novikov algebras with degenerate Lie derived ideal

Remark

All Lie algebras obtained in Proposition 4.2 are nilpotent. This isn't the case in general. For example, if B is abelian and $\operatorname{dim} B=3$, then ξ, D and b_{0} given by

$$
\xi=0, \quad D=\left(\begin{array}{ccc}
0 & \lambda & 0 \\
-\lambda & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \text { and } b_{0}=\lambda_{1} b_{1}+\lambda_{2} b_{2}+\lambda_{3} b_{3}
$$

verifies (5), where $\lambda, \lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}^{*}$. One can show that the Lie algebra obtained in this case, is isomorphic to the non nilpotent Lie algebra defined by the only non vanishing Lie brackets $\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=-x_{2}$ and $\left[x_{1}, x_{4}\right]=x_{5}$.

Lorentzian Novikov algebras

Theorem

Let $(\mathrm{A},\langle\rangle$,$) be a Lorentzian Novikov algebra. Then$

- A_{L} is unimodular.
- The restriction of the product to $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$ is trivial. In particular $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$ is abelian.

Proof.
The first point is a consequence of Theorem 3.2 and Theorem 4.1. Let us show the second point. If $\left[A_{L}, A_{L}\right]$ is non-degenerate, then the result follows from Proposition 3.1. Assume that $\left[A_{L}, A_{L}\right]$ is degenerate and put $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right] \cap\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}=\mathbb{R} e$ with $\mathrm{L}_{e}=\mathrm{R}_{e}=0$. We have

$$
\mathrm{A}_{\mathrm{L}}=\mathrm{U} \oplus \mathbb{R} e \oplus \mathrm{~W} \oplus \mathbb{R} \bar{e}
$$

where $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}=\mathrm{U} \oplus \mathbb{R} e,\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]=\mathbb{R} e \oplus \mathrm{~W}$ and U and W are Euclidean. Let $\left\{u_{1}, \ldots, u_{r}\right\}$ (resp. $\left\{w_{1}, \ldots, w_{q}\right\}$) be an orthonormal basis of U (resp. W). Note that $\mathrm{R}_{u_{i}}$ is symmetric for any $i \in\{1, \ldots, r\}$. Let $i, j \in\{1, \ldots, r\}$ and $k \in\{1, \ldots, q\}$. We have $\left[u_{i}, u_{j}\right]=2 u_{i} \cdot u_{j} \in \mathbb{R} e$. Then we can put $\left[u_{i}, u_{j}\right]=2 u_{i} \cdot u_{j}=a_{i j} e$, where $a_{i j} \in \mathbb{R}$. Since $\bar{e} . w_{k} \in\left[\mathrm{~A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$, then we have

$$
\left\langle\bar{e} . u_{i}, w_{k}\right\rangle=-\left\langle u_{i}, \bar{e} \cdot w_{k}\right\rangle=0,\left\langle\bar{e} \cdot u_{i}, u_{j}\right\rangle=-\frac{1}{2} a_{i j} \text { and }\left\langle\bar{e} \cdot u_{i}, e\right\rangle=0
$$

Thus $\bar{e} . u_{i}=-\frac{1}{2} \sum_{j=1}^{r} a_{i j} u_{j}+\alpha e$, where $\alpha \in \mathbb{R}$. On the other hand, we have

$$
\left\langle u_{i} \cdot \bar{e}, \bar{e}\right\rangle=\left\langle u_{i} \cdot \bar{e}, e\right\rangle=0, \text { and }\left\langle u_{i} \cdot \bar{e}, u_{j}\right\rangle=-\frac{1}{2} a_{i j} .
$$

Thus $u_{i} \cdot \bar{e}=-\frac{1}{2} \sum_{j=1}^{r} a_{i j} u_{j}+x_{0}$, where $x_{0} \in \mathrm{~W}$. Since the product is of Novikov, then $\left\langle\mathrm{R}_{u_{i}} \mathrm{R}_{\bar{e}}\left(u_{i}\right), \bar{e}\right\rangle=\left\langle\mathrm{R}_{\bar{e}} \mathrm{R}_{u_{i}}\left(u_{i}\right), \bar{e}\right\rangle$. But

$$
\left\langle\mathrm{R}_{\bar{e}} \mathrm{R}_{u_{i}}\left(u_{i}\right), \bar{e}\right\rangle=\left\langle\mathrm{L}_{u_{i} \cdot u_{i}}(\bar{e}), \bar{e}\right\rangle=0,
$$

and

$$
\left\langle\mathrm{R}_{u_{i}} \mathrm{R}_{\bar{e}}\left(u_{i}\right), \bar{e}\right\rangle=\left\langle\mathrm{R}_{u_{i}}\left(u_{i} \cdot \bar{e}\right), \bar{e}\right\rangle=\left\langle u_{i}, \bar{e}, \mathrm{R}_{u_{i}}(\bar{e})\right\rangle=\left\langle u_{i} \cdot \bar{e}, \bar{e}, u_{i}\right\rangle .
$$

Thus $\left\langle u_{i} . \bar{e}, \bar{e}, u_{i}\right\rangle=0$. That is $\left\langle-\frac{1}{2} \sum_{j=1}^{r} a_{i j} u_{j}+x_{0},-\frac{1}{2} \sum_{j=1}^{r} a_{i j} u_{j}+\alpha e\right\rangle=0$, which implies that $\sum_{j=1}^{r} a_{i j}^{2}=0$, and the induced product on $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]^{\perp}$ is trivial, as desired.

Remark

Let (A, 〈, ,) be a Lorentzian Novikov algebra. Then, according to Theorem 4.2, A is transitive and the metric is complete.

Pseudo-Euclidean Novikov algebras
of signature (2, $n-2$) with 2-step nilpotent underlying Lie algebras

Pseudo-Euclidean Novikov algebras of signature (2, $n-2$) with 2-step nilpotent underlying Lie algebras

In this last paragraph, we study pseudo-Euclidean Novikov algebra $(\mathrm{A},\langle\rangle$,$) of signature (2, n-2)$ where A_{L} is 2 -step nilpotent. We have $1 \leq \operatorname{dim}_{\mathfrak{z}}\left(\mathrm{A}_{\mathrm{L}}\right) \cap \mathfrak{z}\left(\mathrm{A}_{\mathrm{L}}\right)^{\perp} \leq 2$.

Proposition

(A, \langle,$\rangle) is a pseudo-Euclidean Novikov algebra of signature (2, n-2$) such that A_{L} is 2-step nilpotent and $\operatorname{dim} \mathfrak{z}\left(\mathrm{A}_{\mathrm{L}}\right) \cap \mathfrak{z}\left(\mathrm{A}_{\mathrm{L}}\right)^{\perp}=1$ if and only if A_{L} is a trivial extension of \mathcal{H}_{3}.

Proof.

It is known that A_{L} must be a trivial extension of \mathcal{H}_{3} or L_{6}^{4}. Assume that A_{L} is a trivial extension of L_{6}^{4}. We have $\mathrm{R}_{x_{1}} \mathrm{R}_{x_{2}}\left(x_{1}\right)=-\frac{1}{3 b d} x_{3}$, and $\mathrm{R}_{x_{2}} \mathrm{R}_{x_{1}}\left(x_{1}\right)=-\frac{c}{2 b d} x_{6}$, where $b d \neq 0$. Thus A_{L} can not be a trivial extension of L_{6}^{4}.

Pseudo-Euclidean Novikov algebras of signature (2, $n-2$) with 2-step nilpotent underlying Lie algebras

Proposition

$(\mathrm{A},\langle\rangle$,$) is a pseudo-Euclidean Novikov algebra of signature (2, n-2)$ such that A_{L} is 2-step nilpotent and $\operatorname{dim} \mathfrak{z}\left(\mathrm{A}_{\mathrm{L}}\right) \cap \mathfrak{z}\left(\mathrm{A}_{\mathrm{L}}\right)^{\perp}=2$ if and only if

$$
\mathrm{A}_{\mathrm{L}}=Z_{1} \oplus \operatorname{span}\left\{e_{1}, e_{2}\right\} \oplus \mathrm{B} \oplus \operatorname{span}\left\{\bar{e}_{1}, \bar{e}_{2}\right\}
$$

with the only non vanishing Lie brackets $\left[\bar{e}_{1}, \bar{e}_{2}\right]=\lambda_{1} e_{1}+\lambda_{2} e_{2}$, $\left[\bar{e}_{1}, b_{i}\right]=\alpha_{i} e_{1}+\beta_{i} e_{2}$ and $\left[\bar{e}_{2}, b_{i}\right]=\gamma_{i} e_{1}+\delta_{i} e_{2}$, where $\left\{b_{1}, \ldots, b_{r}\right\}$ is an orthonormal basis of $\mathrm{B}, \lambda_{1}, \lambda_{2}, \alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i} \in \mathbb{R}$ verifiying

$$
\begin{equation*}
\sum_{i=1}^{r}\left(\beta_{i}+\gamma_{i}\right)^{2}=4 \sum_{i=1}^{r} \alpha_{i} \delta_{i}, \sum_{i=1}^{r} \gamma_{i}^{2}=\sum_{i=1}^{r} \beta_{i}^{2}, \sum_{i=1}^{r} \alpha_{i} \beta_{i}=\sum_{i=1}^{r} \alpha_{i} \gamma_{i} \text { and } \sum_{i=1}^{r} \delta_{i} \beta_{i}=\sum_{i=1}^{r} \delta_{i} \gamma_{i} . \tag{6}
\end{equation*}
$$

Proof.

According to Theorem 6.2 of [?], $A_{L}=Z_{1} \oplus \operatorname{span}\left\{e_{1}, e_{2}\right\} \oplus B \oplus \operatorname{span}\left\{\bar{e}_{1}, \bar{e}_{2}\right\}$ with the Lie brackets $\left[\bar{e}_{1}, \bar{e}_{2}\right]=z_{0}$, $\left[\bar{e}_{1}, b_{i}\right]=\alpha_{i} e_{1}+\beta_{i} e_{2}$ and $\left[\bar{e}_{2}, b_{i}\right]=\gamma_{i} e_{1}+\delta_{i} e_{2}$, where $\left\{b_{1}, \ldots, b_{r}\right\}$ is an orthonormal basis of B and $3\left\langle z_{0}, z_{0}\right\rangle=\sum_{i=1}^{r}\left(\gamma_{i}+\beta_{i}\right)^{2}-4 \alpha_{i} \delta_{i}$. Let $\left\{z_{1}, \ldots, z_{q}\right\}$ be an orthonormal basis of Z_{1} and put
$z_{0}=\sum_{i=1}^{q} x_{i} z_{i}+\lambda_{1} e_{1}+\lambda_{2} e_{2}$. Then the only non vanishing Levi-Civita products are $R_{z_{i}}\left(\bar{e}_{1}\right)=-\frac{1}{2} x_{i} e_{2}, R_{z_{i}}\left(\bar{e}_{2}\right)=$
$\frac{1}{2} x_{i} e_{1}, R_{b_{i}}\left(\bar{e}_{1}\right)=\alpha_{i} e_{1}+\frac{1}{2}\left(\beta_{i}+\gamma_{i}\right) e_{2}, R_{b_{i}}\left(\bar{e}_{2}\right)=\frac{1}{2}\left(\beta_{i}+\gamma_{i}\right) e_{1}+\delta_{i} e_{2}, R_{\bar{e}_{1}}\left(z_{i}\right)=-\frac{1}{2} x_{i} e_{2}, R_{\bar{e}_{1}}\left(b_{i}\right)=$
$\frac{\gamma_{i}-\beta_{i}}{2} e_{2}, \mathrm{R}_{\bar{e}_{1}}\left(\bar{e}_{1}\right)=-\sum_{i=1}^{r} \alpha_{i} b_{i}-\lambda_{1} e_{2}, \mathrm{R}_{\bar{e}_{1}}\left(\bar{e}_{2}\right)=-\frac{1}{2} \sum_{i=1}^{q} x_{i} z_{i}-\lambda_{2} e_{2}-\frac{1}{2} \sum_{i=1}^{r}\left(\beta_{i}+\gamma_{i}\right) b_{i}, \mathrm{R}_{\bar{e}_{2}}\left(z_{i}\right)=$
$\frac{1}{2} x_{i} e_{1}, \mathrm{R}_{\bar{e}_{2}}\left(b_{i}\right)=\frac{\beta_{i}-\gamma_{i}}{2} e_{1}, \mathrm{R}_{\bar{e}_{2}}\left(\bar{e}_{1}\right)=\frac{1}{2} \sum_{i=1}^{q} x_{i} z_{i}+\lambda_{1} e_{1}-\frac{1}{2} \sum_{i=1}^{r}\left(\beta_{i}+\gamma_{i}\right) b_{i}, R_{\bar{e}_{2}}\left(\bar{e}_{2}\right)=-\sum_{i=1}^{r} \delta_{i} b_{i}+\lambda_{2} e_{1}$.
Thus $(\mathrm{A},\langle\rangle$,$) is a pseudo-Euclidean Novikov algebra if and only if \mathrm{R}_{\bar{e}_{1}} \mathrm{R}_{\bar{e}_{2}}=\mathrm{R}_{\bar{e}_{2}} \mathrm{R}_{\bar{e}_{1}}$, which is equivalent to the equalities (6) and $x_{i}=0$ for any $i \in\{1, \ldots, q\}$. This completes the proof.

Example

If we take $\alpha_{i}=\delta_{i}=\lambda_{1}=\lambda_{2}=0$ and $\beta_{i}=-\gamma_{i}$ then

$$
\mathrm{A}_{\mathrm{L}}=Z_{1} \oplus \operatorname{span}\left\{e_{1}, e_{2}\right\} \oplus \mathrm{B} \oplus \operatorname{span}\left\{\bar{e}_{1}, \bar{e}_{2}\right\}
$$

with the Lie brackets $\left[\bar{e}_{1}, b_{i}\right]=e_{1}$ and $\left[\bar{e}_{2}, b_{i}\right]=-e_{2}$.

Corollary

Let $(\mathrm{A},\langle\rangle$,$) be a pseudo-Euclidean Novikov algebra of signature$ $(2, n-2)$ such that A_{L} is 2-step nilpotent. Then $\operatorname{dim}\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right] \leq 2$ and $\left[\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{L}}\right]$ is totally isotropic.

Many Thanks

